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1. Introduction

The phenomenon of spontaneous chiral symmetry breaking (CSB) is one of the two most

important nonperturbative properties of quantum chromodynamics (QCD). Another prop-

erty, confinement of color, is believed to be deeply connected with CSB. It is interesting

to see how confinement and CSB sometimes play competitive roles when one speaks about

low-energy hadron physics. Namely, one can find statements in the literature that con-

finement is “not seen” in low-energy spectroscopy, and it is possible to model the QCD

vacuum by a set of classical field configurations (as one successfully does, for example, in

the instanton model [1], see reviews [2, 3] and references therein), despite the fact that such

ensembles typically have no confinement in the sense of area law of the Wilson loop. There

is also an alternative line of arguments, going back to the good old constituent models,

which states the “supremacy” of confinement (understood in terms of the confining string

formation and corresponding linear potential between quarks), while CSB is to be derived

from confinement (see, e.g. [4]) and there is no need in instantons or alike in this approach.

In fact, these two points of view are to some extent complementary to each other, as the ex-

ample of pion clearly shows: pion is simultaneously Nambu-Goldstone boson which should

be massless in the chiral limit and, on the other hand, it is a bound state or quarks and

antiquarks, as any other meson in QCD is.

The two physical pictures outlined above correspond to two different approaches one

usually uses analyzing the phenomenon of CSB in QCD. The first approach concentrates

on studies of the Dirac operator zero modes in this or that gauge field background. The

chiral condensate is related in this case to the (quasi)-zero modes density by the well

known Banks-Casher relation [5]. The model dependence enters when one starts to answer
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an important question about physical relevance of the chosen background, in particular,

about its confining properties. We refer the interested reader to the review [2] and references

therein for the details of this approach.

Alternatively, one can choose this or that interaction kernel (for example, manifestly

providing confinement) and construct gap equation for the chiral condensate with this

kernel (see, e.g. recent paper [6]). The same procedure is commonly used in finite density

QCD [7]. This exhibits in a very clear (but model-dependent) way the general relation

between confinement and CSB [8], taking confinement as the cause of CSB.

In Shifman-Vainshtein-Zakharov sum rules approach [9] the chiral condensate 〈q̄q〉
enters as an input parameter not directly related to, for example, gluon condensate 〈αsF

2〉.
In other words, there is no simple relation like 〈q̄q〉 = const · 〈αsF

2〉3/4 one might naively

think of.1 In fact, studying correlators of hadronic currents one can get more sophisticated

relations (see, e.g. [10]) between chiral and gluon condensates (and other nonperturbative

quantities like fπ). The problem however is that SVZ approach misses the relation between

chiral symmetry breaking and confinement. For example, nonzero value of 〈αsF
2〉 does not

at all indicate that the vacuum confines.2 As is well known, one possible way to take the

effects of confinement into account properly is to consider the dynamics of nonlocal objects

like the Wilson loops.

In the present paper we address the problem of CSB in the first-quantized language,

i.e. in terms of quark trajectories and not fields. In this sense, we are closer to the latter

approach discussed above and not to the former one. The criterium for CSB in this frame-

work is given by well known Banks-Casher asymptotic law (eq. (2.9) of this paper). We are

going to address the following question: how this asymptotic law follows from the proper-

ties of the Wilson loop expansion over local condensates and their derivatives. Speaking

differently, we are looking for the simplest subseries of the Wilson loop operator product

expansion, whose summation provides CSB at the level of one-loop effective action. It

is shown that CSB has to do with the large proper time asymptotic limit of the specific

confining nonlocal gauge-invariant correlator of gluon fields.

2. One-loop effective action

We start from the expression for the Euclidean QCD partition function:

Z =

∫

DAa
µDqDq† exp

(

− 1

4g2

∫

d4xF a
µνF a

µν +

∫

d4xq† (iγµDµ − im) q

)

= 〈det (iγµDµ − im)〉 (2.1)

and we confine our attention to the case when the mass matrix is proportional to the unit

matrix in flavor space with the eigenvalue m. As usual, the average of any gauge-invariant

1It is worth reminding that nonperturbative gluon condensate is not a local order parameter, while chiral

condensate is.
2As one can see on the lattice at large temperatures [11].
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operator R(A) over gauge fields is understood with the standard Yang-Mills action

〈R(A)〉 =

∫

DAa
µ R(A) exp

(

− 1

4g2

∫

d4xF a
µνF a

µν

)

(2.2)

where normalization factor, proper gauge-fixing and ghost terms are included in the inte-

gration measure. The chiral condensate is given by the standard form

〈q̄q〉(M) = i〈q†q〉(E) = − 1

V

∂ log Z

∂m
= −∂Γeff

∂m
(2.3)

and the superscripts M,E stays for Minkowski and Euclidean values. It is assumed that

the right hand side of (2.3) does not vanish in the limit m → 0. This nonzero condensate

corresponds to spontaneous CSB.

We are going to exploit the so-called Feynman-Schwinger representation technique,

whose essence goes back to the seminal papers [12, 13]. There are basically two lines of

use of this approach in the modern research. The first one exploits advantages the path

integration provides for gauge-invariant formulation of relativistic bound state problems

(see review [14] and references therein). The second line [15, 16] concentrates on the loop

calculations in perturbative field theory (for review see [17]), which is sometimes simpler in

world-line approach than in conventional Feynman diagrammatic framework. We collect

some relevant formulas in appendix A for convenience, while the interested reader is referred

to the original papers, textbooks [18 – 20] and cited reviews for all technical details.

Confining ourselves by quenched approximation (exact in large Nc limit), we have

〈det K〉 = exp〈log det K〉+ O(N−2
c ) and hence the standard expression for Euclidean one-

loop effective action:

Γeff =
1

V
log Z = −2

∫ ∞

0

dT

T
exp(−m2T ) · 〈Z[A,T ]〉 (2.4)

where

Z[A,T ] =

∫

Dxµ

∫

Dψµ exp (−S0) tr P exp

(

i

∫ T

0
dτ (Aµẋµ − Fµνψµψν)

)

(2.5)

with the free world-line action given by S0 =
∫ T
0 dτ

(

1
4 ẋ2

µ + 1
2ψψ̇

)

. We have included the

factor 1/V in the integration measure Dxµ. The factor 2 = 4 × (1/2) in (2.4) came from

the trace over anticommuting coordinates (i.e. integration over the fermionic fields with

the free action is normalized to unity in our conventions). All dynamical information is

contained in the double average (over gauge fields and over quark trajectories) of the spinor

Wilson loop

w(T ) ≡ 〈Z[A,T ]〉 (2.6)

There are several limiting cases where one can successfully study the behavior of w(T ) or

related functions. Of prime importance is the nonrelativistic limit of large mass m, where

the target space for the contours xµ becomes effectively three-dimensional and introducing

the einbein fields for dynamical masses one can systematically explore constituent picture

of hadrons (see, e.g. [14, 21] and references therein). However for the trace (and hence
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for the closed contours) we are discussing at the moment nonrelativistically suppressed

backward-in-time trajectories are as important as forward-in-time ones and to address this

problem in einbein fields formalism one probably has to use some alternative methods (see,

e.g. [22]).

The second important case corresponds to the small T asymptotic. In a way, this is the

standard operator product expansion [23]. In context of the theory of gravity it corresponds

to well known Schwinger - DeWitt expansion [24]. One is to expand the Wilson loop in

powers of fields in this limit. For constant background fields this is the way one obtains the

effective Lagrangians of Heisenberg-Euler type. The typical term of this expansion looks

like

〈Dk1Fm1Dk2Fm2 . . . DkpFmp〉 · T l (2.7)

The leading term represents the so called heavy quark condensate [9]

〈q̄q〉 = − 1

12m

〈αs

π
F a

µνF a
µν

〉

(2.8)

(see also [25], where the heavy quark condensate is discussed in the path integral formalism,

including nonzero temperature case). It is clear that this expansion is unapplicable in the

limit of vanishing mass m.

The phenomenon of CSB is related to the large proper time asymptotic of w(T ). As

it was noticed by Banks and Casher in their seminal paper [5], for spontaneous CSB one

should have

w(T ) ∼ c√
T

at T → ∞ (2.9)

Indeed, it is easy to see from (2.3) and (2.4) that

〈q̄q〉 = −∂Γeff

∂m
∼ −4m

∫ ∞

0
dT exp(−m2T )

c√
T

= −4
√

π · c (2.10)

Taking into account that in free case (i.e. without gauge fields) w(T ) is given by

w0(T ) = (4πT )−
d
2 (2.11)

one can say that the quark is dynamically forced to move effectively in 1 dimension instead

of 3 + 1 and this is the cause for CSB in this framework.

There are a few well known cases where the dimensional reduction of this kind indeed

takes place. However, it is worth noticing that the condition (2.9) is rather restrictive to

be incorporated in a simple way into the standard background field formalism. Indeed,

one can show on general grounds (see [26 – 28] and [29] for review) that the typical large

T asymptotic of the heat kernel trace TrK(T ) =
∫

dxK(T, x, x), entering the effective

action as

Γ1−loop =
1

2

∫ ∞

0

dT

T
TrK(T ) (2.12)

in generic fixed background field is given by

TrK(T ) =
1

(4πT )d/2

(

TW0 + W1 +
1

T
W2 + · · ·

)

(2.13)
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where nonlocal factors Wn can be expressed as integrals of the corresponding zero modes.

Notice that the expansion goes in integer powers of 1/T . We will address this contradiction

between (2.13) and (2.9) in the section 4.

Simple illustrative example is Heisenberg - Euler effective Lagrangian [30] for constant

magnetic field

L = − 1

8π2

∫ ∞

0

dT

T
exp(−m2T ) ·

(

eH

T
cth eHT − 1

T 2
− 1

3
(eH)2

)

(2.14)

The lowest energy level of the massless fermion from Dirac sea in constant magnetic field

is zero, hence the absence of exponential damping in (2.14), cth eHT → 1 with T → ∞.

The factor 1/T = T · T−4/2 in front of the cth eHT corresponds to the fact that in four-

dimensional space-time there are two directions the fermion can move along as a free

particle, while the dynamics in two other directions is confined by the field.3 This is

nothing but the first term in the rhs of (2.13). On the other hand, we see something

new here with respect to (2.13). The leading term at large T is the last term in the rhs

of (2.14), which is O(T 0) and not O(T−1). This term represents one-loop short distance

charge renormalization and, at the same time, the leading strong-field (i.e. small mass)

logarithmic asymptotic of (2.14):

L =
e2H2

24π2
log

eH

m2
(2.15)

This phenomenon of strong field - short distance duality [31] (small T - large T duality in

our context) is quite general (see, e.g. recent discussion in [32]) and provides interesting

possibilities for OPE subseries summation (see discussion below). Thus we see that quan-

tum dynamics (the necessity to express the answer in terms of renormalized quantities in

this case) can make the result (2.13) inapplicable.

3. Effective action at Gaussian level

The spinor Wilson loop factor Z[A,T ] given by (2.5) can be expanded in powers of fields and

derivatives. It is convenient to use Fock-Schwinger gauge condition, which is a particular

case of the so called generalized contour (or coordinate) gauge [33]. The latter is defined

in terms of the oriented non-selfintersecting contour zµ(s) as

Aµ(z(s))
∂zµ(s)

∂s
= 0 (3.1)

The simplest contour gauge one usually uses is the Fock-Schwinger gauge condition with

zµ(s) = x
(0)
µ + s(x−x(0))µ. In this gauge ∂2zµ/∂s2 = 0 and thanks to that one can express

the vector-potential in the following form (compare with (B.3) from appendix B)

Aa
µ(x) =

∫ 1

0
sdsyρ exp(syσDσ)abF b

ρµ(x(0)) (3.2)

where y = x − x(0) and Latin indices a, b = 1, . . . , N2 − 1 stay for adjoint color.

3For the field H = ezH , the particle moves freely in z-directions (along the field) and in t-direction (no

force acts on the particle in rest).
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It is worth stressing that for contour gauges gauge invariance corresponds to the con-

tour independence, not just x(0) independence, as is sometimes posed. This situation is

analogous to the covariant Rξ-gauges, where ξ-independence is necessary but not sufficient

condition of gauge invariance; in other words one can easily construct gauge-noninvariant

(and hence physically unobservable) but ξ-independent quantity. The contour indepen-

dence is restored only in the full Wilson loop, but not at any given order of the expansion

over fields and/or derivatives (neither at any given order of the covariant perturbation

theory [26, 27]). Practically it means that general expansion of some nonlocal object like

the Wilson loop over local condensates has no universal coefficients, independent on the

choice of contours used to fix the gauge (see the appendix B).

With these reservations in mind, we can proceed and expand the Wilson loop over

gluon fields. In quantum case the dynamics is determined by the average over quark

trajectories yµ(τ) (and over spinor “coordinates” ψµ(τ)) with Gaussian weight exp(−S0)

and over the vacuum gluon fields with the standard Yang-Mills action. Having performed

the latter average, the first two nontrivial terms in the expansion of Z[A,T ] take the form

〈Z[A,T ]〉 ≈ w0(T ) +

∫

Dyµ

∫

Dψµ exp(−S0)

∫ T

0
dτ1

∫ τ1

0
dτ2

∫ 1

0
ds1

∫ 1

0
ds2

(s1ẏµ1
(τ1)yρ1

(τ1) − ψµ1
(τ1)ψρ1

(τ1)δ(1 − s1))

·(s2ẏµ2
(τ2)yρ2

(τ2) − ψµ2
(τ2)ψρ2

(τ2)δ(1 − s2)) ·
·
〈

Tr exp(s2y(τ2)D)Fµ2ρ2
(x(0)) exp(s1y(τ1)D)Fµ1ρ1

(x(0))
〉

(3.3)

The computational technique for such integrals is well developed [15 – 17, 34]. The basic

ingredients are the one-dimensional Green’s functions on a circle GB(τ1, τ2) and GF (τ1, τ2)

defined by

〈yµ(τ1)yν(τ2)〉y = −δµνGB(τ1, τ2) = δµν

(

|τ1 − τ2| −
(τ1 − τ2)

2

T

)

(3.4)

and

〈ψµ(τ1)ψν(τ2)〉ψ =
δµν

2
GF (τ1, τ2) =

δµν

2
sign(τ1 − τ2) (3.5)

The following identity is of special use
〈

exp
(

yµ(τ1)k
(1)
µ

)

exp
(

yν(τ2)k
(2)
ν

)〉

y
= exp

(

−GB(τ1, τ2)k
(1)
µ k(2)

µ

)

(3.6)

The result is given by the expressions

Γ
(2)
eff = −2

∫ ∞

0

dT

T
exp(−m2T )w0(T ) · T 2K(T ) (3.7)

where w0(T ) is defined by (2.11), while K(T ) reads

K(T ) = 〈Tr Fµν(x(0))F(ξ)Fµν(x(0))〉 (3.8)

with the formfactor

F(ξ) =

∫ 1

0
duu(1 − u) exp(u(1 − u)ξ) (3.9)

– 6 –
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and ξ = T
−→
Dσ

−→
Dσ. The arrows indicate that the derivatives act on the right. The con-

traction of indices in (3.8) is worth noticing (see [35] in this respect). The most nontrivial

thing is the exact expression for the formfactor (3.9), which was obtained for the first

time in [26] for classical backgrounds (and effectively reproduced in [34] using Feynman-

Schwinger technique). For large m eqs. (3.7)–(3.9) lead to the expression (2.8).

4. Large-T asymptotic limit and CSB

We are to study large-T asymptotic of (3.7). One has F(ξ) ∼ 1/ξ2 as ξ → −∞. It is

easy to show that for the scalar particle one would have F(ξ) ∼ 1/ξ as ξ → −∞. This

important difference corresponds to the fact that no exponential damping at large T other

than exp(−m2T ) is possible for fermions in the chiral limit. Naively one has

lim
T→∞

T 2K(T ) = 2〈Tr Fµν(x(0))D−4Fµν(x(0))〉 (4.1)

This expression is formal, however, due to infrared divergencies. We will show that general

asymptotic expansion at large T may contain logarithmic terms of the form

T 2K(T ) = c0 log

(

T

λ2

)

+ O
(

T−1 log T
)

for T → ∞ (4.2)

where λ is typical correlation length and c0 - some dimensionless coefficient. Possible

subleading T -independent contribution in the left hand side of (4.2) is included into the

definition of λ.

Let us show how the behavior (4.2) of K(T ) follows. The asymptotic pattern is con-

trolled by the function

f(s) = 〈Tr Fµν(x(0)) exp
(

s
−→
Dσ

−→
Dσ

)

Fµν(x(0))〉 (4.3)

which one needs to know both at large and at small s. The small proper time asymptotic

of f(s) is given by the standard OPE:

f(s) = 〈Tr F 2
µν〉 + s〈Tr FµνD2Fµν〉 + O(s2) (4.4)

As usual in SVZ sum rules, it is assumed by definition that all perturbative contributions

are subtracted from each term of (4.4), thus defining the genuine nonperturbative func-

tion (4.3). In the framework of Wilson OPE each term in (4.4) depends on the dynamical

scale µ (separating contributions of perturbative coefficient functions and nonperturbative

matrix elements). The subtle question about µ - dependence of the function f(s) and the

effective action is somewhat beyond our main line and will not be discussed. Taking more

phenomenological attitude, the reader may think of f(s) as being computed on nonper-

turbative field configurations of one’s favorite QCD vacuum ensemble (instantons, dyons,

P-vortices etc); this would correspond to some effective µ ≈ 1GeV of the order of the onset

of nonperturbative dynamics.
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The Gaussian approximation to the function f(s) defined by (4.3) can be written as

(see details in appendix B)

f(s) → f2(s) =
1

(4πs)2

∫

d4l exp
(

−l2/4s
)

〈Tr Fµν(x(0)) exp
(

lσ
−→
Dσ

)

Fµν(x(0))〉 (4.5)

The correlator in the right hand side (compare with (3.2)) is frequently used in the Gaussian

stochastic scenario of confinement ([36], see review [21] and references therein). At distances

l larger than some typical correlation length λ̃ this correlator decays exponentially4 with l.

Therefore for sλ̃−2 À 1 the leading asymptotic is given by f(s) ∼ s−2. To be more precise,

it is convenient to parameterize two-point correlator in the standard way [36]

〈Tr Fµν(x(0)) exp
(

lα
−→
Dα

)

Fρσ(x(0))〉 = (δµρδνσ − δµσδνρ)D(l2) +

+∂µ

[

(lρδνσ − lσδνρ)D1(l
2)

]

−∂ν

[

(lρδµσ − lσδµρ)D1(l
2)

]

(4.6)

where both functions D(l2) and D1(l
2) exponentially decay at large distances. Correspond-

ingly, one has

f2(s) = fD(s) + fD1
(s) (4.7)

with the following asymptotic limits at large s:

fD(s) =
η

s2
+ O(s−3) ; fD1

(s) =
ζ

s3
+ O(s−4) (4.8)

The nonperturbative constants η, ζ are given in this approximation by

η =
3

4

∫ ∞

0
dl2 l2D(l2) ; ζ =

3

16

∫ ∞

0
dl2 l4 D1(l

2) (4.9)

The difference between asymptotic limits of fD(s) and fD1
(s) is of crucial importance.

Indeed, combining (3.8), (3.9) and (4.8) one gets

K(T ) ≡ KD(T ) + KD1
(T ) =

∫ 1

0
du u(1 − u)[fD(u(1 − u)T ) + fD1

(u(1 − u)T )] (4.10)

and for T → ∞ we have

T 2KD(T ) ∼ log T , while T 2KD1
(T ) ∼ log T

T
(4.11)

The latter term being exponentiated cannot produce T−1/2 term and hence the function

D1(l
2) alone gives no spontaneous CSB. In other words, D(l2) ≡ 0 implies unbroken chiral

symmetry. On the other hand, it is well known [36] that just nonzero D(l2) is responsible

for confinement, while D1(l
2) is not.

It is reasonable to expect that the pattern we have discussed at the level of two-point

correlator is general. From higher correlators one would have ∼ log T terms, which add

4Notice that this length λ̃ characterizes the function D(l2) and, generally speaking, λ̃ 6= λ. On the other

hand, it is physically natural to assume that λ̃ and λ are of the same order of magnitude.
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up to the coefficient η, and ∼ logn T terms coming from the corresponding reducible part

(i.e. the product of lower order correlators). The exponentiation of the series produces

the desired power-like behavior of w(T ). All terms ∼ T−k log T are subleading and do not

change the leading power.

Of course, we cannot compute from the first principles the coefficient in front of a

general logn T term of this series to make the above arguments quantitative. But confining

ourself by Gaussian approximation we can proceed further. The actual results for the chiral

condensate and other quantities will crucially depend on the profile of the function f2(s),

which, in its turn, is determined by the functions D(l2) and D1(l
2). Namely, from (4.3)

and (4.6) we have

T 2KD(T ) =
3

4

∫ ∞

0
dl2l2D(l2)

∫ 1

0

du

u(1 − u)
exp

(

− l2

4Tu(1 − u)

)

=
3

2

∫ ∞

0
dl2l2D(l2) exp

(

− l2

2T

)

K0

(

l2

2T

)

=

=
3

2

∫ ∞

0
dl2l2D(l2)

[

log

(

4T

eγl2

)

+
l2

2T
log

(

4T

eγl2

)

+ O
(

T−2 log T
)

]

(4.12)

Thus the leading large-T asymptotic has the form

T 2KD(T ) → 2η log

(

T

λ2

)

(4.13)

with the correlation length λ defined by

log λ2 =

∫ ∞

0 dl2l2D(l2) log
(

eγ l2/4
)

∫ ∞

0 dl2l2D(l2)
(4.14)

It is worth repeating that this leading logarithmic term is absent in the deconfinement

phase where D(l2) = 0.

To summarize, the leading large-T asymptotics (4.2) of Γeff in confining background

from the Gaussian term reads

Γ(0) + Γ
(2)
eff = −2

∫ ∞

0

dT

T
exp(−m2T )w0(T )

(

1 + 2η log

(

T

λ2

)

+ · · ·
)

(4.15)

where both parameters η and λ are of essentially nonperturbative origin.

It is again instructive to compare (4.15) with the constant field case. For constant field

the (unrenormalized) result (2.14) can be written as

Γ = −2

∫ ∞

0

dT

T
exp(−m2T )w0(T ) exp

(

∞
∑

n=1

κn(eHT )2n

)

(4.16)

where

κn = 2
(−1)n+1

n

ζ(2n)

π2n

(

22n−1 − 1
)

(4.17)

The “correlation length” for the constant field is infinite and in this sense T is never large,

the series in n cannot be truncated and at the Gaussian level K(T ) → const 6= 0 for
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T → ∞. For finite correlation length typical term in the corresponding expansion does not

increase as a power of T and K(T ) ∼ log T/T 2 → 0 as T → ∞. In terms of (4.16) the

duality [31] mentioned above corresponds to the fact that the leading large T asymptotic

of renormalized effective action (i.e. the expression (2.15)) is controlled by the lowest term

of the unrenormalized expression (4.16) (i.e. the coefficient κ1).

The leading Gaussian large T behavior in confining background given by (4.15) is much

softer that constant field answer (4.16). It is clear that the logarithmic term (4.2) as it is

cannot lead to CSB (since we need power-like rise to get (2.9)). But partial summation of

such terms can do the job. The most crucial point is the structure of the series in the right

hand side of (4.15). No universal closed form expressions analogous to (3.8), (3.9) for all

terms of higher orders are known (see, however, [28] for explicit form-factors of the third

order). On the other hand, one can argue on physical grounds that terms

1

n!

(

2η log

(

T

λ2

))n

(4.18)

(together with other ones) should present. Such terms correspond to the factorized part

contribution of the higher order averages 〈Tr FF . . . F 〉. The important role played by these

factorized averages is known under the name of vacuum dominance for a long time and it

is successfully used in sum rules approach. From general analysis of [5] we expect that it is

the confinement property that causes the CSB and it is known for a long time that just de-

scribed reduction of the gluon ensemble (known as Gaussian approximation in the context)

provides confinement (see review [21] and references therein). Therefore one can hope that

we have summed “many enough” terms to keep CSB. On the other hand, the connected

parts we have omitted physically correspond to the exchanges by multi-gluon glueballs

and gluelumps, which are heavy objects and hence their contribution is to be suppressed

for the low energy physics (see [37] in this respect). Another argument comes from the

abelian dominance picture (see review [38] and references therein). Since in the maximal

abelian gauge the higher irreducible correlators are suppressed (because they correspond

to diagonal — off-diagonal gluon couplings), one gets the same factorization pattern. It

is important that the Gaussian factorization is to be assumed for the integration over xµ

as well (i.e. we speak about some kind of “rainbow” approximation and no contraction of

y(i), y(j) belonging to different clusters is done).

Summing of this “Gaussian” subseries of the full Wilson loop average would result in

the effective action

Γeff = −2

∫ ∞

0

dT

T
exp(−m2T )w0(T ) ·

[

exp(T 2K(T )) + · · ·
]

(4.19)

where dots stay for the contributions of non-Gaussian terms. The spontaneous chiral

symmetry breaking condition has the following form in considered Gaussian approximation:

lim
T→∞

T
d

dT
T 2K(T ) =

d − 1

2
(4.20)

or, in terms of (4.9)
∫ ∞

0
dl2 l2D(l2) = 1 (4.21)
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in four dimensional space-time. Then for the condensate one gets

〈q̄q〉 = −1

4

(

1√
πλ

)3

(4.22)

where λ is defined by (4.14). The condensate vanishes in the deconfinement phase transition

point.

The above result deserves a few comments. Physically, the parameter η is given by

some integral moment of the function D(l2) and, at the first look can be of arbitrary value,

while we need strictly η = 3/4 to get CSB. In a sense, this is an artefact of Gaussian

approximation. It is worth repeating that higher terms in the r.h.s. of (4.15) bring both

∼ log T terms, shifting pure Gaussian value of η, given by (4.9) to its pure “geometrical”

value (4.20) and ∼ logn T terms, adding up to the exponent. To some extent it resembles

well-known effect of unphysical surface dependence of the Wilson loop average computed

in Gaussian approximation: to get rid of it one has to sum the full cluster expansion.5

Moreover, suppose that the Gaussian asymptotic law for (4.19) would be different from

log T law (4.13). The conclusion in this case would be that Gaussian approximation does

not provide CSB and one needs the full series (or some subseries other than Gaussian)

in (3.3) to get (2.9). The actual conclusion is different: Gaussian reduction of the confining

vacuum can lead to CSB (because of (4.13)) if it is done in a self-consistent (in the sense

of (4.20), (4.21)) way.

On the other hand, all dimensionfull quantities in nonperturbative theory (like conden-

sates, string tension, correlation lengths etc) are proportional to the corresponding power

of ΛQCD with some dimensionless coefficient, unequivocally fixed by the theory. Neither

the ratio of such coefficients is a freely adjustable parameter. Since we discuss in this paper

not the full theory in the gluon sector but rather its Gaussian reduction (still keeping con-

finement), the relation (4.21) can be understood as a kind of self-consistency condition for

Gaussian approximation (if we wish it to provide CSB). The fact that such self-consistent

reduction should introduce relations between condensates and correlation lengths is well

known [39]. The ultimate reason for that are the Bianchi identities: correlator of derivatives

ερµνσ∂ρFµν(x, x(0)) with any operator, for example, Fαβ(y, x(0)) (inversely proportional to

some typical correlation length) is given by the higher correlators of F ’s (another term,

containing Bianchi form, vanishes). But the higher correlators factorize to the product of

Gaussian ones in the chosen approximation.

It is clear from the discussion that we were mostly interested in qualitative pattern of

the effect. Nevertheless it may be interesting to compare the results with the existing phe-

nomenology of Gaussian stochastic picture of QCD vacuum. Standard way of representing

the lattice data on the nonperturbative function D(l2) is

D(l2) = D(0)P
(

l/λ̃
)

exp
(

−l/λ̃
)

(4.23)

where P (x) is some rational polynomial, normalized by condition P (0) = 1. Lattice [11]

data correspond to λ̃ = 0.22 Fm for quenched SU(3) case, while the value of dimensionless

5This analogy should not be understood literally, of course, there is no any special surface in the discussed

problem, since we sum over all trajectories of the light quark.
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product D(0)λ̃4 is numerically about (0.15 ± 0.05). Unfortunately, the poor knowledge of

the pre-exponential factor P (x) precludes one to make quantitative predictions from the

expressions (4.21), (4.22). However, it is interesting to notice that the simplest ansatz

P (x) ≡ 1 does not describe data satisfactory;6 it predicts D(0)λ̃4 = 1/12 and too small

value of the chiral condensate 〈q̄q〉 = −(140 MeV)3 instead of the correct value 〈q̄q〉 =

−(250 MeV)3. Of course, one can easily fit P (x) to get the desired numbers. But this

seems to be misleading since, as it has been already mentioned, eventually these are the

higher order terms which shift η and 〈q̄q〉 to their correct values.

5. Conclusion

We have studied the chiral symmetry breaking at one-loop level in the background of

confining gluon fields. The latter is taken in the Gaussian picture, i.e. we have omitted

higher than two-point irreducible condensates. This approximation is supported by the

sum-rule phenomenology as well as by more sophisticated analytical and lattice analysis.

It is worth stressing that the vacuum gluon fields ensemble reduced in such way still has

the confinement property. It is shown that this vacuum breaks chiral symmetry sponta-

neously provided the large proper-time asymptotic of the operator product expansion has

the form (4.20).

At the same time it is worth stressing that despite “Gaussian reduction” alone is

enough to get CSB, it does not mean that higher order terms are not important. There

are at least two respects where they are: first, their presence is a matter of principle for

correctness of the general Wilson loop asymptotic (see, e.g. comments in [21]) like surface

independence etc; and second, they can be numerically significant (say, contribute 10-15%)

in the quantities like η, ζ.

We have also discussed that perturbative asymptotic of the corresponding correlators

cannot provide CSB; roughly speaking, at small momenta perturbative Green’s functions

are “too soft”. No any specific topological properties of the vacuum gluon fields show up

in our analysis, the only relevant thing is the large proper time asymptotic of the OPE

(resulting from confinement). We did not use in any place explicit expressions for the

gluon fields profile, only the vacuum averages entered our analysis. Nevertheless it would

be interesting to understand the relation of the discussed issues with the well established

phenomenology of CSB in, e.g. instanton backgrounds (without confinement per se), having

in mind that it is ultimately the strong confining color forces that determine the dynamics

of CSB in accordance with general analysis of [8].
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Note added. The related issues are discussed in the recent preprint hep-th/0511176

by V.Vyas we got after our paper had been completed. The main interest of the cited

paper concentrates on the consequences the asymptotic law (2.9) has for the behavior

of two-point correlators of hadronic currents, while we have tried to answer another and

physically different question: how can the asymptotic (2.9) itself be obtained using the

OPE language.

A. Feynman-Schwinger method: the basic formulas

Throughout the paper we use Feynman-Schwinger world-line integration technique. The

standard building blocks here are the following:

1. γ5 - invariance of the determinant (we define Dµ = ∂µ − iAµ):

log det (γµDµ + m) =
1

2
log det ([γµDµ + m] [−γµDµ + m])

=
1

2
log det

(

−D2 +
ig

4
Fµν [γµγν ] + m2

)

(A.1)

2. proper-time representation of the logarithm:

log A = −
∫ ∞

0

dT

T
exp (−AT ) (A.2)

The above expression is of course symbolical and properly regularized form of (A.2)

must be used in actual computations. The typical examples are given by exact

equality

log A + γ = − lim
ξ→0

∫ ∞

0
dTT ξ−1 (1 + ξ log T ) exp (−AT ) (A.3)

which can be obtained differentiating the identity

A−ξΓ(1 + ξ) = ξ

∫ ∞

0
dTT ξ−1 exp(−AT )

or by frequently used integral

log A = −
∫ ∞

0

dT

T
(exp(−AT ) − exp(−T )) (A.4)

3. integration over commuting paths replacing the bosonic traces:

Tr exp
(

−T (−D2)
)

=

∫

d4p

(2π)4
〈p| exp

(

−(p + gA)2T
)

|p〉 (A.5)

=

∫

Dx exp

(

−1

4

∫ T

0
ẋ2

µdτ

)

tr P exp

(

ig

∫ T

0
Aµ(x)ẋµdτ

)
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4. integration over anti-commuting fields representing the path-ordered exponent of the

gamma matrices:

Tr P exp

(

− ig

4

∫ T

0
dτFµν [γµγν ]

)

=

∫

Dψtr P exp

(

−
∫ T

0
dτ

(

1

2
ψµψ̇µ−igFµνψµψν

))

(A.6)

where the small trace tr goes over color indices only. The corresponding operators ψ̂

anti-commute and act on the Hilbert space of Dirac spinors |α〉 as

ψµψν + ψνψµ = δµν ; ψµ|α〉 =
1√
2
γµ

αβ |β〉 (A.7)

The normalization is provided by

∫

Dψ exp

(

−1

2

∫ T

0
dτψµψ̇µ

)

= 1 (A.8)

The integration goes over periodic commuting xµ(τ) and anti-commuting ψµ(τ), de-

fined on the circle of the length T .

B. On the contour dependence of nonlocal quantities

Let us consider the gauge invariant phase factor along small closed contour C for a partic-

ular inhomogeneous field Aµ

W (C) = Φ(x, x) = Tr P exp

(

i

∮

C
Aµdzµ

)

(B.1)

The naive expansion over fields has the following form:

W (C) ≈ 1 + i2
∮

C
dzµ

∮ z

C
duν Tr Aν(u)Aµ(z) + · · · (B.2)

The second term is gauge non- invariant (in nonabelian case). If one rewrites it in contour

gauge [33] where

Aµ(x) =

∫ 1

0
ds

∂zα(s)

∂s

∂zβ(s)

∂xµ
Fαβ(z(s)) (B.3)

the answer would be contour dependent. One can rearrange the series (B.2) to make it

manifestly gauge-invariant:

W (C) ≈ 1 + i2
∫

S
dσµρ(z)

∫

Sz

dσνσ(u) Tr Fµρ(z, x(0))Fνσ(u, x(0)) (B.4)

where x(0) = z(s = 0) and the shifted field strength is given by

Fµρ(z, x(0)) = Φ(x(0), z)Fµρ(z)Φ(z, x(0)) (B.5)

This is nothing but the nonabelian Stokes theorem [33, 40]. Notice that despite the Wilson

loop itself is gauge-invariant and x(0)-independent (it depends only on the contour C but
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not on the integration surface S in (B.4)), the second term in the right hand side of (B.4)

is gauge-invariant but contour dependent. Its SVZ-like expansion over condensate and

derivatives would manifestly depend on the particular choice of contours zµ(s) and will be

different for different contour gauges (i.e. for different choices of zα(s) and hence S).

However, in Gaussian approximation the account for contour dependence would not

be legitimate [36]. The reason is that the variation of the nonlocal Gaussian correlator

〈Tr Fµρ(z, x(0))Fνσ(w, x(0))〉

over contours brings additional powers of Fαβ , and hence it is proportional to the correlators

of higher orders (see related discussion in [21]). We have used the same phenomenon

replacing (4.3) by (4.5) in the main text. Indeed, let us look at the power expansions of

those functions. They are given by

f(s) = 〈Tr Fµν

(

1 + sD2
α +

s2

2
(D2

α)2 + · · ·
)

Fµν〉 (B.6)

and

f2(s) = 〈Tr Fµν

(

1 + sD2
α +

s2

2

[

(D2
α)2 − 2

3
DαiFαβDβ +

1

6
F 2

αβ

]

+ · · ·
)

Fµν〉 (B.7)

It is seen that the difference between f(s) and f2(s) contains correlators of higher or-

ders, resulting from non-commutativity of Dµ’s. In Gaussian approximation each power of

derivative corresponds to large factor λ̃−1 and in this sense to extract the leading term one

can always neglect the commutators [DαDβ ]. The validity of Gaussian approximation, in

its turn, is controlled by the dimensionless parameter

κ = 〈Tr F 2
µν〉λ̃4

which is assumed to be small (it was mentioned above that, for example, D(0)λ̃4 is about

1/10 according to the lattice data). In physical terms, Gaussian vacuum is short-correlated,

and the nonperturbative gluon condensate is small in units of the lightest gluelump mass

(the latter is of the order of 1/λ̃). Using the language of covariant perturbation theory one

can say that we have summed up only terms of the kind 〈Tr F (D2)nF 〉 and not the terms

with lesser number of derivatives.

To summarize, we have

f(s) = f2(s) + O(κ1+r)

where r is some positive number. Therefore the leading Gaussian asymptotic of f(s) is

given by the asymptotic of f2(s) found in eq. (4.8) in the main text.
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